PRODUCTS OF POWERS IN FINITE SIMPLE GROUPS

ΒY

C. MARTINEZ*

Departamento de Matemáticas, Universidad de Oviedo 33.007 Oviedo, Spain e-mail: chelo@pinon.ccu.uniovi.es

AND

E. Zelmanov**

Department of Mathematics, University of Chicago Chicago, IL 60637, USA e-mail: zelmanov@math.yale.edu

ABSTRACT

Let G be a group. For a natural number $d \ge 1$ let G^d denote the subgroup of G generated by all powers a^d , $a \in G$.

A. Shalev raised the question if there exists a function N = N(m, d)such that for an *m*-generated finite group G an arbitrary element from G^d can be represented as $a_1^d \cdots a_N^d$, $a_i \in G$. The positive answer to this question would imply that in a finitely generated profinite group G all power subgroups G^d are closed and that an arbitrary subgroup of finite index in G is closed. In [5,6] the first author proved the existence of such a function for nilpotent groups and for finite solvable groups of bounded Fitting height.

Another interpretation of the existence of N(m,d) is definability of power subgroups G^d (see [10]).

In this paper we address the question for finite simple groups. All finite simple groups are known to be 2-generated. Thus, we prove the following:

THEOREM: There exists a function N = N(d) such that for an arbitrary finite simple group G either $G^d = 1$ or $G = \{a_1^d \cdots a_N^d | a_i \in G\}$.

The proof is based on the Classification of finite simple groups and sometimes resorts to a case-by-case analysis.

^{*} Partially supported by DGICYT.

^{**} Partially supported by the NSF Grant DMS-9400466. Received June 15, 1995 and in revised form November 1, 1995

1. Alternating groups

E. Bertram [1] proved that for any numbers n,l such that $n \ge 5$, $[3n/4] \le l \le n$, an arbitrary even permutation on n symbols can be expressed as a product of two cycles each of length l.

Without loss of generality we will assume that the number d is even. If $n \ge 4d$, then there exists an odd number l such that $[3n/4] \le l \le n$ and l is relatively prime with d.

Since an element of order l, (l, d) = 1, is a d-th power, it follows from the result of Bertram that every even permutation on n symbols $(n \ge 4d)$ is a product of two d-th powers.

There exists a number M(d) such that for any n < 4d an arbitrary element from A(n) is a product of M(d) d-th powers or $A(n)^d = (1)$. Now it remains to let $N(d) = \max(M(d), 2)$.

This proves the theorem for alternating groups.

2. Chevalley groups

Let Σ be a reduced irreducible root system, F a field, and let $G = G(\Sigma, F)$ be the universal Chevalley group, that corresponds to Σ and F (for definitions and notation see [9]). If we want to consider untwisted and twisted Chevalley groups simultaneously we will use the notation $G({}^{\epsilon}\Sigma, F)$.

Let Z be the center of the group $G({}^{\epsilon}\Sigma, F)$. It is known that $G({}^{\epsilon}\Sigma, F)$ is a perfect group and the quotient group $G({}^{\epsilon}\Sigma, F)/Z$ is simple unless both the field F and the rank of Σ are very small. This implies that an arbitrary normal subgroup of $G({}^{\epsilon}\Sigma, F)$ is either the whole group or is contained in Z. If $G({}^{\epsilon}\Sigma, F)^d \subseteq Z$ then the simple group $G({}^{\epsilon}\Sigma, F)/Z$ has exponent dividing d. There are finitely many finite simple groups of a given exponent (see [2]). Hence there exists $r_0 \geq 1$ such that if the rank of Σ is greater than or equal to r_0 , then for any field F we have $G({}^{\epsilon}\Sigma, F) = G({}^{\epsilon}\Sigma, F)^d$.

Let Σ be a root system of rank greater than or equal to r_0 . Just as it was shown in [10] for products of commutators, we will show that there exists a number $M = M(\Sigma)$ such that for an arbitrary field F we have

$$G(^{\epsilon}\Sigma, F) = \{a_1^d \cdots a_M^d | a_i \in G(^{\epsilon}\Sigma, F)\}.$$

Otherwise, for an arbitrary $n \ge 1$ there exists a field F_n and an element $x_n \in G(\epsilon \Sigma, F_n)$ which is not a product of less than n d-th powers of elements of

 $G({}^{\epsilon}\Sigma, F_n)$. Let \mathcal{U} be an ultrafilter in the set of natural numbers and let F be the ultraproduct $F = \prod_{n \in N} F_n/\mathcal{U}$ of fields F_n . M. Point [7] proved that $G({}^{\epsilon}\Sigma, F) = \prod_{n \in N} G({}^{\epsilon}\Sigma, F_n)/\mathcal{U}$. Then the element $x = (x_1, x_2, \ldots)/\mathcal{U}$ does not lie in $G({}^{\epsilon}\Sigma, F)^d$, which contradicts our earlier assertion.

Since there are finitely many root systems of given rank and in view of the remark above, we will always assume that Σ is one of the root systems A_n , B_n , C_n , D_n , $n \ge r_0$. Let F be a finite field of characteristic p > 0.

Let $\Delta = \{\delta_1, \ldots, \delta_n\}$ be a system of simple roots of Σ and let Σ^+ be the set of all positive roots with respect to Δ . The subgroup U generated by all root subgroups $X_{\alpha} = \{x_{\alpha}(k), k \in F\}$, where $\alpha \in \Sigma^+$, is a Sylow *p*-subgroup of G. Let U_i be the subgroup of G generated by all root subgroups X_{α} where $ht(\alpha) \geq i$. The series $U = U_1 > U_2 > \cdots$ is a central *p*-series of U, that is, $[U_i, U_j] \subseteq U_{i+j}$ and $U_i^p \subseteq U_{ip}$.

Let $g = x_{\delta_1}(1) \cdots x_{\delta_n}(1) \in U \setminus U_2$. Each factor U_i/U_{i+1} is an elementary abelian *p*-group. The commutation with the element *g* induces the linear mapping

 $U_i/U_{i+1} \longrightarrow U_{i+1}/U_{i+2}, \quad \text{where } aU_{i+1} \longrightarrow [a,g]U_{i+2}, \quad a \in U_i.$

Lemma 2.1: $[U_m/U_{m+1}, g] = U_{m+1}/U_{m+2}, m \ge 1.$

Proof: The Dynkin diagram of Σ is one of the following diagrams:

A_n :	$\delta_1 \delta_2 \delta_3$	•••	δ_{n-1}	δ_n
B_n :	$\delta_1 \delta_2 \delta_3$		$\overline{\delta_{n-1}}$	δ_n
C_n :	$\delta_1 \delta_2 \delta_3$		δ_{n-1}	δ_n
D_n :	$\delta_1 \delta_2 \qquad \cdots$	$\frac{1}{\delta_n}$		n-1 δ_n

If $\alpha = \sum_{i=1}^{n} k_i \delta_i$ is a positive root, $k_i \ge 0$, then k_1 is equal either to 0 or to 1. If $k_1 = 1$, then there is at most one simple root δ such that $\alpha + \delta \in \Sigma$.

We will prove the lemma by induction on n. For n = 1 the assertion is trivial. Let α be a root of height m + 1. There exists a simple root δ_k such that $\alpha - \delta_k$ is a root of height m (see [3] or [4]). If the only simple root δ such that $\alpha - \delta \in \Sigma$ is δ_k , then $[X_{\alpha-\delta_k}, g] = [X_{\alpha-\delta_k}, x_{\delta_k}(1)] = X_{\alpha} \mod U_{m+2}$. That's why we will suppose that at least two differences of α with simple roots lie in Σ .

Let us consider the case when the decomposition of α as a linear combination of simple roots nontrivially involves δ_1 . Then there exists a root δ_k , $k \geq 2$, such that $\alpha - \delta_k \in \Sigma$. The decomposition of $\alpha - \delta_k$ still involves δ_1 . Hence, $[X_{\alpha-\delta_k}, g] = [X_{\alpha-\delta_k}, x_{\delta_k}(1)] = X_{\alpha} \mod U_{m+2}$.

Now suppose that the decomposition of α does not involve δ_1 . Let Σ' be the (root) subsystem of Σ generated by $\pm \delta_2, \ldots, \pm \delta_n$. Let $\alpha_1, \ldots, \alpha_t$ be all positive roots of Σ' of height m (with respect to $\delta_2, \ldots, \delta_n$). Let $g' = x_{\delta_2}(1) \cdots x_{\delta_n}(1)$. By the induction assumption the root subgroup X_{α} lies in $[X_{\alpha_1} \cdots X_{\alpha_t}, g']U_{m+2}$. Hence $X_{\alpha} \subseteq [X_{\alpha_1} \cdots X_{\alpha_t}, g][X_{\alpha_1} \cdots X_{\alpha_t}, x_{\delta_1}(-1)]U_{m+2}$.

But $[X_{\alpha_1} \cdots X_{\alpha_t}, x_{\delta_1}(-1)] \subseteq X_{\alpha_1+\delta_1} \cdots X_{\alpha_t+\delta_1} U_{m+2} \subseteq [U_m, g] U_{m+2}$ by what we proved above. Lemma 2.1 is proved.

LEMMA 2.2: Let P be a finite p-group with a central p-series $P = P_1 > P_2 > \cdots$. Suppose that there exists an element $g \in P \setminus P_2$ such that $[P_m/P_{m+1}, g] = P_{m+1}/P_{m+2}$ for any $m \ge 1$. Then for any $k \ge 1$ an arbitrary element from $g^{p^k}P_{p^k+1}$ is a p^k -th power.

Proof: Let a be an element from $g^{p^k}P_{p^k+1}$. Suppose that we have found an element $b_s = gc, c \in P_2$, such that $b_s^{p^k} = a \mod P_s, s \ge p^k + 1$. To start the process we let $b_{p^k+1} = g$. Let $b_s^{p^k} = a.d, d \in P_s$.

There exists an element $u \in P_{s-p^k+1}$ such that

$$[\cdots[u, \underbrace{g], g], \cdots, g]}_{p^k - 1} = d^{-1} \operatorname{mod} P_{s+1}.$$

Then

$$(gcu)^{p^{k}} = (gc)^{p^{k}} [\cdots [u, \underbrace{g], g], \cdots, g]}_{p^{k}-1} = a \operatorname{mod} P_{s+1}.$$

Now it remains to let $b_{s+1} = gcu$. If $P_s = (1)$ then $b_s^{p^k} = a$. Lemma 2.2 is proved.

Let $d = p^k m$, where p and m are coprime. An element of U is a d-th power if and only if it is a p^k -th power.

From Lemmas 2.1 and 2.2 it follows that an arbitrary element from the coset $g^{p^k}U_{p^k+1}$ is a p^k -th power.

COROLLARY 2.1: An arbitrary element from $U_{p^{k}+1} = g^{-p^{k}}(g^{p^{k}}U_{p^{k}+1})$ is a product of two p^{k} -th powers.

LEMMA 2.3: A system of simple roots Δ is a union of subsets

$$\Delta = \Delta_1 \bigcup \cdots \bigcup \Delta_{q+1} \bigcup \Delta'_1 \bigcup \cdots \bigcup \Delta'_q,$$

where each Δ'_i , Δ'_j corresponds to a connected part of the Dynkin diagram; $|\Delta_1| = \cdots = |\Delta_q| = |\Delta'_1| = \cdots = |\Delta'_q| = r_0, r_0 \le |\Delta_{q+1}| \le 2r_0 + 2$; for any $\alpha \in \Delta_i, \beta \in \Delta_j$, where $i \ne j$, the $\alpha + \beta$ is not a root; for any $\alpha \in \Delta'_i, \beta \in \Delta'_j$, where $i \ne j$, the $\alpha + \beta$ is not a root.

Proof: If $n \leq 2r_0 + 2$ then q = 0 and $\Delta_{q+1} = \Delta$. Suppose, therefore, that $n \geq 2r_0 + 3$. Let $\Sigma = A_n$, the Dynkin diagram is:

•	-•		• • •	-	
1	2	3		n-1	n

where natural numbers represent simple roots. We have $n = (r_0 + 1)(q + 1) + r$, $0 \le r \le r_0, q \ge 1$.

Let

$$\begin{split} &\Delta_1 = \{1, 2, \dots, r_0\}, \quad \Delta_2 = \{r_0 + 2, \dots, 2r_0 + 1\}, \dots, \\ &\Delta_q = \{(q-1)r_0 + q, \dots, qr_0 + q - 1\}, \quad \Delta_{q+1} = \{q(r_0 + 1) + 1, \dots, n\}, \\ &|\Delta_{q+1}| = r_0 + 1 + r \le 2r_0 + 1; \quad \Delta_1' = \{2, \dots, r_0 + 1\}, \\ &\Delta_2' = \{r_0 + 3, \dots, 2r_0 + 2\}, \dots, \quad \Delta_q' = \{(q-1)r_0 + q + 1, \dots, q(r_0 + 1)\}. \end{split}$$

If Σ is a root system of one of the types B_n , C_n , D_n then we add the *n*-th root to the subset Δ_{q+1} , thus possibly increasing its size to $2r_0 + 2$. Lemma 2.3 is proved.

Recall, that for an arbitrary $r \ge 1$ there exists a number N = N(r) such that if Σ is a reduced irreducible root system of rank $\le r$, F is a field, and $G = G(\Sigma, F)$, then either $G^d = (1)$ or $G = \{g_1^d \cdots g_N^d | g_i \in G\}$.

LEMMA 2.4: Let $t = N(2r_0 + 2) + N(r_0)$. An arbitrary element from U can be represented as $g_1^d \cdots g_t^d u$, where $u \in U_2$.

Proof: Let G_i be the subgroup generated by root subgroups $X_{\pm \alpha}$, $\alpha \in \Delta_i$, $1 \leq i \leq q+1$ and let G'_i be the subgroup generated by root subgroups $X_{\pm \alpha}$,

 $\alpha \in \Delta'_j$, $1 \leq j \leq q$. Then any two elements from distinct subgroups G_i , G_j (resp. G'_i , G'_j) commute.

We have $U \subseteq G_1 \cdots G_{q+1}G'_1 \cdots G'_q U_2$. An arbitrary element from G_i can be represented as a product of $N(2r_0 + 2)$ d-th powers of elements of G_i . Hence, an arbitrary element from $G_1 \cdots G_{q+1}$ also can be represented as a product of $N(2r_0 + 2)$ d-th powers. Similarly, an arbitrary element from $G'_1 \cdots G'_q$ is a product of $N(r_0)$ d-th powers. This finishes the proof of the lemma.

LEMMA 2.5: An arbitrary element from U_k , $k \ge 2$, can be represented as $g_1^d \cdots g_{2t}^d u$, where $g_i \in G$, $1 \le i \le 2t$, $u \in U_{k+1}$.

Proof: Let $u_k \in U_k$. By Lemma 2.1 we have $u_k = [u_{k-1}, g] \cdot u_{k+1}$, where $u_{k-1} \in U_{k-1}$, $u_{k+1} \in U_{k+1}$.

Furthemore, Lemma 2.4 implies that $g = g'u_2$, where g' is a product of t d-th powers of elements of G, $u_2 \in U_2$. Now,

$$u_{k} = [u_{k-1}, g'.u_{2}]u_{k+1} = [u_{k-1}, u_{2}][u_{k-1}, g'][[u_{k-1}, g'], u_{2}]u_{k+1}.$$

The element $[u_{k-1}, g']$ is a product of 2t d-th powers. The elements $[[u_{k-1}, g'], u_2]$ and $[u_{k-1}, u_2]$ lie in U_{k+1} .

Hence,

$$u_{k} = ([u_{k-1}, u_{2}][u_{k-1}, g'][u_{k-1}, u_{2}]^{-1}) \cdot ([u_{k-1}, u_{2}][[u_{k-1}, g+], u_{2}]u_{k+1})$$

= $g_{1}^{d} \cdots g_{2t}^{d} u$,

where $u = [u_{k-1}, u_2][[u_{k-1}, g'], u_2]u_{k+1} \in U_{k+1}$. Lemma 2.5 is proved.

From Lemmas 2.4 and 2.5 and the Corollary of Lemma 2.2 it follows that an arbitrary element from U is a product of $N_U = t + 2t(p^k - 1) + 2 d$ -th powers of elements of G.

Now let us consider elements $\omega_{\alpha}(k) = x_{\alpha}(k)x_{-\alpha}(-k^{-1})x_{\alpha}(k)$ and $h_{\alpha}(k) = \omega_{\alpha}(k)\omega_{\alpha}(1)^{-1}$, $\alpha \in \Sigma$, $0 \neq k \in F$.

The subgroup H is generated by elements $h_{\alpha}(k), \alpha \in \Delta, 0 \neq k \in F$. Following the notation of Lemma 2.3, let $H(\Delta_i)$ and $H(\Delta'_j)$ denote the subgroups generated by elements $h_{\alpha}(k), \alpha \in \Delta_i$ and by $h_{\alpha}(k), \alpha \in \Delta'_j$ respectively. We have

$$H = H(\Delta_1) \cdots H(\Delta_{q+1}) H(\Delta'_1) \cdots H(\Delta'_q) \le G_1 \cdots G_{q+1} G'_1 \cdots G'_q$$

Hence, an arbitrary element from H can be represented as a product of $N_H = N(2r_0 + 2) + N(r_0) d$ -th powers.

Vol. 96, 1996

PRODUCTS OF POWERS

Let N be the subgroup of G generated by all elements $\omega_{\alpha}(k)$, $\alpha \in \Sigma$, $0 \neq k \in F$. Let W be the Weyl group of Σ , that is the group generated by reflections ω_{α} , $\alpha \in \Sigma$. It is known (see [9]) that H is a normal subgroup of N and there is an isomorphism $\varphi: W \longrightarrow N/H$ such that $\varphi(\omega_{\alpha}) = H\omega_{\alpha}(k)$ for any α .

CASE A: Let $\Sigma = A_n$. Then W is isomorphic to the symmetric group $S_{n+1} = (12)A_{n+1}$. Thus, $W = \omega_{\delta_1} W_0$, where $W_0 \cong A_{n+1}$.

Let N_0 be the subgroup of N generated by all cosets lying in $\varphi(W_0)$. Clearly, $N = \omega_{\delta_1}(1)N_0$. The element $\omega_{\delta_1}(1)$ lies in the subgroup of G generated by $X_{\pm \delta_i}$, $1 \le i \le r_0$.

Hence, $\omega_{\delta_1}(1)$ is a product of $N(r_0)$ *d*-th powers. An arbitrary element of N_0 is a product of N_A *d*-th powers modulo *H*. Finally, an arbitrary element from *N* is a product of $N(r_0) + N_A + NH$ *d*-th powers.

CASE B: If $\Sigma = B_n$, then the Dynkin diagram is:

$$\delta_1 \quad \delta_2 \quad \delta_3 \qquad \cdots \qquad \delta_{n-1} \quad \delta_n$$

and the Weyl group is isomorphic to $S_n \propto Z_2^n$. An element $a = (a_1, \ldots, a_n) \in Z_2^n$ can be represented as a commutator $(g, b), g \in S_n, b \in Z_2^n$, if and only if $a_1 + \cdots + a_n = 0$. Hence, $W = \omega_{\delta_1} W_0(\omega_1 W_0, Z_2^n) \omega_{\delta_n}$, $W_0 \cong A(n)$. Each of the elements $\omega_{\delta_1}(1), \omega_{\delta_n}(1)$ is a product of $N(r_0)$ d-th powers. As above we conclude that an arbitrary element from N is a product of $N(r_0) + N_A + 2(N(r_0) + N_A) + N(r_0) + N_H = 4N(r_0) + 3N_A + N_H$ d-th powers.

CASE C: This case is similar to the case B.

CASE D: If $\Sigma = D_n$, then the Weyl group is $W \cong S_n \propto Z_2^n(0)$, where $Z_2^n(0) = \{(a_1, \ldots, a_n) \in Z_2^n | a_1 + \cdots + a_n = 0\}$. Hence, $W = \omega_{\delta_1} W_0(\omega_{\delta_1} W_0, Z_2^n(0))$. An arbitrary element from N is a product of $3(N(r_0) + N_A) + N_H$ d-th powers.

Now we can finish the proof of the Theorem for Chevalley groups. Let B = UH be the Borel subgroup of G. From the Bruhat decomposition it follows that an arbitrary element of G is a product of $2(N_H + N_U) + 4N(r_0) + 3N_A + N_H d$ -th powers.

Remark: If G is a Chevalley group over an infinite field F, then every element of G is a product of a bounded number of d-th powers, as it follows from the proofs of the above results.

3. Twisted groups

Since we are interested only in groups of sufficiently big rank we will consider only groups of type ${}^{2}\Sigma$, where $\Sigma = A_{n}$ or $\Sigma = D_{n}$. Such a group is the subgroup of the Chevalley group $G(\Sigma, F)$ which is fixed by a certain automorphism σ of order 2 (see [9]).

For any root subgroup X_{α} , $\alpha \in \Sigma$ we have $\sigma(X_{\alpha}) = X_{\rho(\alpha)}$, where ρ is the automorphism of Σ induced by the symmetry of the Dynkin diagram. The subgroups U, H, N, B are fixed by σ and $G(^{2}\Sigma, F) = B_{\sigma}N_{\sigma}B_{\sigma}, B_{\sigma} = H_{\sigma}U_{\sigma}$. That's why we'll apply the same scheme as before.

CASE ${}^{2}D_{n}$: Consider the lattice $\bigoplus_{i=1}^{n} Z\omega_{i} \subseteq \mathbb{R}^{n}$. Then

$$\Sigma = \{ \pm \omega_i \pm \omega_j, 1 \le i \ne j \le n \},$$

$$\Delta = \{ \delta_1 = \omega_1 - \omega_2, \delta_2 = \omega_2 - \omega_3, \dots, \delta_{n-1} = \omega_{n-1} - \omega_n, \delta_n = \omega_{n-1} + \omega_n \}$$

The symmetry ρ is induced by the linear mapping $\omega_i \to \omega_i$ for $1 \le i \le n-1$, $\omega_n \to -\omega_n$. For a ρ -orbit a of Σ let $\mathcal{X}_a = X_\alpha$ if $a = \{\alpha\}, \alpha \in \Sigma \bigcap (\bigoplus_{i=1}^{n-1} Z\omega_i)$ and $\mathcal{X}_a = \{x_\alpha \sigma(x_\alpha), x_\alpha \in X_\alpha\}$ if $a = \{\alpha, \rho(\alpha)\}, \alpha = \pm \omega_i \pm \omega_n$. Since ρ permutes positive roots it makes sense to speak about the set of positive orbits Σ^+/ρ . Since $\operatorname{ht}(\alpha) = \operatorname{ht}(\rho(\alpha))$ for any $\alpha \in \Sigma^+$ it makes sense to speak about the height of an orbit $a \in \Sigma^+/\rho$.

The subgroup U_{σ_1} is generated by all x_{α} 's, where $u \in \Sigma^+/\rho$, $\operatorname{ht}(a) \geq i$. Then $U_{\sigma} = U_{\sigma,1} \geq U_{\sigma,2} \geq \cdots$ is a central *p*-series. Let $g' = x_{\delta_1}(1) \cdots x_{\delta_{n-2}}(1)$.

LEMMA 3.1: For any $m \ge 1$ we have $[U_{\sigma,m}/U_{\sigma,m+1},g'] = U_{\sigma,m+1}/U_{\sigma,m+2}$.

Proof: Let a be a ρ -orbit of Σ^+ of height m + 1. If $a \in \sum_{i=1}^{n-1} Z\omega_i$, then the assertion follows from Lemma 2.1.

For $a = \{\omega_i + \omega_n, \omega_i - \omega_n\}$, ht(a) = n - i = m + 1, we have $\mathcal{X}_a = [\mathcal{X}_b, x_{\delta_i}(1)] = [\mathcal{X}_b, g'] \mod U_{\sigma, m+2}$, where $b = \{\omega_{i+1} + \omega_n, \omega_{i+1} - \omega_n\}$. Lemma 3.1 is proved.

In view of Lemma 2.2 an arbitrary element from $U_{\sigma,p^{k}+1}$ is a product of two *d*-th powers.

For every subset Δ_i, Δ'_j of Lemma 2.3 we have $\rho(\Delta_i) = \Delta_i, \ \rho(\Delta'_j) = \Delta'_j$ and $\Delta/\rho = \Delta_1 \bigcup \cdots \bigcup \Delta_q \bigcup (\Delta_{q+1}/\rho) \bigcup \Delta'_1 \bigcup \cdots \bigcup \Delta'_q$. We can assume that the number r_0 is big enough so that for any field F the groups $G(^2D_{r_0}, F)$ and $G(^2A_{r_0}, F)$ do not satisfy the law $x^d = 1$. The number $N(k), \ k \ge r_0$, can also be adjusted to make sure that an arbitrary element from $G({}^{2}D_{k}, F)$ or $G({}^{2}A_{k}, F)$ is a product of N(k) d-th powers. Repeating the arguments from Lemmas 2.4, 2.5, we get that an arbitrary element from U_{σ} is a product of $N_{U,\sigma} = t + 2t(p^{k} - 1) + 2$ d-th powers, where $t = N(2r_{0} + 2) + N(r_{0})$.

Again repeating the arguments from the second section we conclude that $H_{\sigma} \subseteq G_1 \cdots G_{q+1}G'_1 \cdots G'_q$ and, thus, an arbitrary element from H_{σ} is a product of $N_{H,\sigma} = t$ d-th powers.

The group $W_{\sigma} = N_{\sigma}/H_{\sigma}$ is isomorphic to the Weyl group of type B_{n-1} , that is $W_{\sigma} \cong S(n-1) \propto Z_2^{n-1}$. As in the second section, it implies that an arbitrary element from N_{σ} is a product of $4N(r_0) + 3N_A + t$ d-th powers. From Bruhat decomposition $G = G(^2D_n, F) = B_{\sigma}N_{\sigma}B_{\sigma}$ it follows that an arbitrary element of G is a product of $2(N_{U,\sigma} + t) + (4N(r_0) + 3N_A + t)$ d-th powers.

CASE ² A_n : Consider the lattice $\bigoplus_{i=1}^{n+1} Z\omega_i \subseteq R^n$. Then

$$\Sigma = \{\omega_i - \omega_j, 1 \le i \ne j \le n+1\},\$$

$$\Delta = \{\delta_1 = \omega_1 - \omega_2, \delta_2 = \omega_2 - \omega_3, \dots, \delta_n = \omega_n - \omega_{n+1}, \}.$$

The symmetry ρ is induced by the linear mapping $\omega_i \to -\omega_{n+2-i}$ for $1 \le i \le n+1$.

Let $\tau(i) = n + 2 - i$.

Let $k = \frac{1}{2}(r_0 + 1)$ if r_0 is odd and $k = \frac{1}{2}r_0 + 1$ if r_0 is even. In both cases $2k \ge r_0 + 1$ and $4k \le 2r_0 + 4$.

Let n + 1 = 2k(q + 1) + r, r < 2k. Consider the sets

$$S_1 = \{1, 2, \dots, k, \tau(1), \dots, \tau(k)\},$$

$$S_2 = \{k + 1, \dots, 2k, \tau(k + 1), \dots, \tau(2k)\},$$

$$\dots, S_q = \{(q - 1)k + 1, \dots, qk, \tau((q - 1)k + 1), \dots, \tau(qk)\},$$

$$S_{q+1} = \{i, qk < i < n + 2 - qk\}.$$

It is easy to see that $\{1, 2, ..., n+1\}$ is the disjoint union of $S_1, ..., S_{q+1}$; $|S_i| = 2k$ for $1 \le i \le q$ and $|S_{q+1}| = 2k + r < 4k$. For

$$S_i = \{i_1, \ldots, i_k, \tau(i_1), \ldots, \tau(i_k)\}$$

consider also the subset $S'_i = \{i_1 + 1, \dots, i_k + 1, \tau(i_1 + 1), \dots, \tau(i_k + 1)\}$. Then $|S'_i| = 2k$ and $S'_i \cap S'_j = \emptyset$ for $i \neq j$.

$$H_{\sigma} \subseteq G_{1\sigma} \cdots G_{q+1,\sigma} G'_{1\sigma} \cdots G'_{q\sigma}.$$

Hence an arbitrary element from H is a product of $t = N(2r_0 + 4) + N(r_0)$ d-th powers.

Furthemore,

$$U_{\sigma} \subseteq G_{1\sigma} \cdots G_{q+1,\sigma} G'_{1\sigma} \cdots G'_{q\sigma} U_{\sigma,2}.$$

Let $\delta_{i_1}, \ldots, \delta_{i_m}$ be all simple roots lying in $\bigoplus_{\mu \in S_i} Z\omega_{\mu}$. Since S_i is symmetric we can put them in such an order that the element $g_i = x_{\delta_{i_1}}(1) \cdots x_{\delta_{i_m}}(1)$ lies in $G_{i,\sigma}$. And similarly we get elements $g'_i \in G'_i$. Let $g = g_1 \cdots g_{q+1}g'_1 \cdots g'_q$. The element g is a product of t d-th powers of elements of G_{σ} .

One-element orbits of ρ in Σ look like $\{\omega_i - \omega_{\tau(i)}\}$. Let C be the subgroup generated by all root subgroups $X_{\omega_i - \omega_{\tau(i)}}$, where $i < \tau(i)$.

LEMMA 3.2: An arbitrary element x from $U_{\sigma,2}$ can be represented as x = c[u, g], where $c \in C$, $u \in U_{\sigma}$.

Proof: Let $a = \{\alpha, \rho(\alpha)\}$ be a two-element orbit from Σ^+/ρ of height m. Then $\mathcal{X}_a = \{x_\alpha \sigma(x_\alpha), x_\alpha \in X_\alpha\}$. By Lemma 2.1, for an arbitrary element $x_\alpha \in X_\alpha$ we have $x_\alpha = [x_{\alpha_1} \cdots x_{\alpha_r}, g] \mod U_{m+1}$, where $x_{\alpha_i} \in X_{\alpha_i}$, $\operatorname{ht}(\alpha_i) = m - 1$. Then,

$$x_{\alpha}\sigma(x_{\alpha}) = [x_{\alpha_1}\sigma(x_{\alpha_1})\cdots x_{\alpha_r}\sigma(x_{\alpha_r}),g] \mod U_{\sigma,m+1}.$$

Suppose that we have found elements $c_m \in C$, $u_m \in U_\sigma$ such that $x = c_m[u_m, g]$ mod $U_{\sigma,m}$.

For a two-element orbit $a \in \Sigma^+/\rho$ of height m, and for an arbitrary element $x_a \in \mathcal{X}_a$, we have $x_a = [y,g] \mod U_{\sigma,m+1}$, where $y \in U_{\sigma,m}$. Hence, $c_m[u_m,g]x_a = c_m[u_m,g] \mod U_{\sigma,m+1}$.

If a is a one-element orbit of height m, then $\mathcal{X}_a \subseteq C$ and $c_m[u_m, g]x_a = (c_m x_a)[u_m, g] \mod U_{\sigma, m+1}$. This proves Lemma 3.2.

The set $\{1, 2, ..., n + 1\}$ can be divided into a disjoint union of τ -symmetric subsets $T_1, T_2, ...$ each of size $k, r_0 \leq k \leq 2r_0$. Let $G(T_k)$ be the subgroup generated by all root subgroups $X_{\omega_i - \omega_j}$; $i, j \in T_k$ and let $G(T_k)_{\sigma}$ be the subgroup of σ -fixed elements of $G(T_k)$. Elements from distinct subgroups $G(T_i), G(T_j)$ commute, and $C \subseteq \prod_k G(T_k)_{\sigma}$. Hence, an arbitrary element from C is a product of $N(2r_0)$ d-th powers.

Now it follows that an arbitrary element from U_{σ} is a product of $N(2r_0) + 3t$ *d*-th powers.

The quotient group N_{σ}/H_{σ} is isomorphic to the Weyl group of type B_n . Thus, like in the second section, we conclude that an arbitrary element of $G(^2A_n, F)$ is a product of $2(N(2r_0) + 4t) + (4N(r_0) + 3N_A + t) d$ -th powers. The Theorem is proved.

The authors are grateful to A. Mann and the referee for helpful remarks.

Remark: After this work was finished the first author learned from J. S. Wilson that I. Saxl and J. S. Wilson have independently proved the Theorem.

References

- E. Bertram, Even permutations as a product of two conjugate cycles, Journal of Combinatorial Theory (A) 12 (1972), 368-380.
- [2] J. H. Conway, R. T. Curtis, S. P. Norton, R. P. Parker and R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
- [3] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, Berlin, 1975.
- [4] N. Jacobson, Lie Algebras, Wiley-Interscience, New York, 1962.
- [5] C. Martinez, On power subgroups of pro-finite groups, Transactions of the American Mathematical Society 345 (1994), 865-869.
- [6] C. Martinez, Power subgroups of pro-(finite soluble) groups, Journal of the London Mathematical Society, to appear.
- [7] M. Point, Ultraproducts of Chevalley groups, submitted.
- [8] A. Shalev, Finite p-groups, Proceedings of the NATO Conference in Group Theory, Istanbul, 1994.
- [9] R. Steinberg, Lectures on Chevalley groups, Lecture Notes, Yale University, 1968.
- [10] J. S. Wilson, First-order group theory, School of Mathematics and Statistics preprints, The University of Birmingham, 1994.