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ABSTRACT
Let G be a group. For a natural number d > 1 let G¢ denote the subgroup
of G generated by all powers a4, a € G.

A. Shalev raised the question if there exists a function N = N(m,d)
such that for an m-generated finite group G an arbitrary element from
G? can be represented as a'li . -a}iv, a; € G. The positive answer to this
question would imply that in a finitely generated profinite group G all
power subgroups G¢ are closed and that an arbitrary subgroup of finite
index in G is closed. In [5,6] the first author proved the existence of such
a function for nilpotent groups and for finite solvable groups of bounded
Fitting height.

Another interpretation of the existence of N(m,d) is definability of
power subgroups G¢ (see [10]).

In this paper we address the question for finite simple groups. All finite

simple groups are known to be 2-generated. Thus, we prove the following:

THEOREM: There exists-a function N = N(d) such that for an arbitrary
finite simple group G either G¢ =1 or G = {a{---a%a; € G}.

The proof is based on the Classification of finite simple groups and

sometimes resorts to a case-by-case analysis.
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1. Alternating groups

E. Bertram [1] proved that for any numbers n,! such that n > 5, [3n/4] <1 < n,
an arbitrary even permutation on n symbols can be expressed as a product of
two cycles each of length .

Without loss of generality we will assume that the number d is even. If n > 4d,
then there exists an odd number [ such that [3n/4] <! < n and [ is relatively
prime with d.

Since an element of order I, (I,d) = 1, is a d-th power, it follows from the result
of Bertram that every even permutation on n symbols (n > 4d) is a product of
two d-th powers.

There exists a number M (d) such that for any n < 4d an arbitrary element
from A(n) is a product of M(d) d-th powers or A(n)? = (1). Now it remains to
let N(d) = max(M(d),?2).

This proves the theorem for alternating groups.

2. Chevalley groups

Let ¥ be a reduced irreducible root system, F a field, and let G = G(Z, F) be
the universal Chevalley group, that corresponds to ¥ and F (for definitions and
notation see [9]). If we want to consider untwisted and twisted Chevalley groups
simultaneously we will use the notation G(*L, F).

Let Z be the center of the group G(°X, F). It is known that G(°Z, F') is a
perfect group and the quotient group G(°L, F)/Z is simple unless both the field F
and the rank of 3 are very small. This implies that an arbitrary normal subgroup
of G(°X, F) is either the whole group or is contained in Z. If G(°Z, F)¢ C Z then
the simple group G(°Z, F)/Z has exponent dividing d. There are finitely many
finite simple groups of a given exponent (see [2]). Hence there exists 7o > 1 such
that if the rank of ¥ is greater than or equal to rg, then for any field F' we have
G(°%,F) = G(°%, F)“.

Let ¥ be a root system of rank greater than or equal to ro. Just as it was
shown in [10] for products of commutators, we will show that there exists a
number M = M (X)) such that for an arbitrary field F' we have

G(°T, F) = {a?---ads|a; € G(°T, F)}.

Otherwise, for an arbitrary n > 1 there exists a field F,, and an element z,, €
G(¢Z, F,) which is not a product of less than n d-th powers of elements of
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G(*Z, F,). Let U be an ultrafilter in the set of natural numbers and let F
be the ultraproduct F = [],cn Fn/U of fields F,,. M. Point [7] proved that
G(°L,F) = [Inen G(°Z, Fr) /U. Then the element x = (z1, %3, ...)/U does not
lie in G(°%, F)¢, which contradicts our earlier assertion.

Since there are finitely many root systems of given rank and in view of the
remark above, we will always assume that ¥ is one of the root systems A,,, B,,
Cpn, D, n > rg. Let F be a finite field of characteristic p > 0.

Let A = {61,...,6,} be a system of simple roots of £ and let £ be the set
of all positive roots with respect to A. The subgroup U generated by all root
subgroups X, = {z4(k), k € F}, where a € T+, is a Sylow p-subgroup of G. Let
U; be the subgroup of G generated by all root subgroups X, where ht(a) > <.
The series U = U; > U > -- - is a central p-series of U, that is, [U;, U;] C Uiy,
and UP C Us,.

Let g = x5, (1) - - - x5, (1) € U\U,. Each factor U;/U; 4, is an elementary abelian
p-group. The commutation with the element g induces the linear mapping

Ui/UH-l — Ui+1/Ui+2, where an-H — [a,g]Ui+2, a €U

LEMMA 2.1: [Un/Um+1,9] = Un41/Umy2, m > 1.

Proof: The Dynkin diagram of ¥ is one of the following diagrams:

A —o—o— - —o—o
" 0y b2 83 b1 bn
" b1 62 63 On-1 On
n 01 62 03 On1 bp

611—1
01 b9 On_2 6

Ifa= Z;;l k;b; is a positive root, k; > 0, then k; is equal either to 0 or to 1.
If k, = 1, then there is at most one simple root é such that a + § € X.

We will prove the lemma by induction on n. For n = 1 the assertion is trivial.
Let o be a root of height m+ 1. There exists a simple root §; such that a — & is
a root of height m (see [3] or [4]). If the only simple root § such that a — 6§ € ©
is 6k, then [Xo-s,,9] = [Xazs,, Ts, (1)] = Xo mod Uy, yo.
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That’s why we will suppose that at least two differences of a with simple roots
lie in X.

Let us consider the case when the decomposition of « as a linear combination
of simple roots nontrivially involves ;. Then there exists a root 6, k > 2,
such that a — 6, € %. The decomposition of a — & still involves §;. Hence,
[Xa._gk,g] = [Xa_gk,zgk(l)] = Xa mod Um+2.

Now suppose that the decomposition of o does not involve §;. Let X' be the
(root) subsystem of ¥ generated by +62,...,+6,. Let ay,..., 0 be all positive
roots of ¥’ of height m (with respect to 6a,...,6,). Let ¢’ = z5,(1)---zs,(1).
By the induction assumption the root subgroup X, lies in [Xq, - - Xq,, §']Um+2-
Hence X4 C [Xa; - Xy 9][Xay -+ Xows T8, (—1)|Uny2-

But [)(c,1 .. 'Xat§1'61(—1)] C Xoy+6; - Xayt6; Ums2 C [Um,g]Um+2 by what
we proved above. Lemma 2.1 is proved. |

LEMMA 2.2: Let P be a finite p-group with a central p-series P = P, > P, >
---. Suppose that there exists an element g € P\ P, such that [Pn,/Ppi1,9] =
Ppt1/Pmyo for any m > 1. Then for any k > 1 an arbitrary element from
g”‘c Pyyqisa p*-th power.

Proof: Let a be an element from g?’kakH. Suppose that we have found an
element b, = gc, ¢ € Py, such that b’;lc = a mod P,, s > p* + 1. To start the
process we let byt = g. Let b’;k =ad,d € P;.

There exists an element u € P,_p; such that

[' B [U,g],g], o ')g] =d! mOdPs+1.
\__W_J
pk—1
Then
(gew)® = (9¢)" [+ [, 9], 6], -+, 9] = add™" = amod Py
_\F—’
p*-1
Now it remains to let by4; = geu. If P, = (1) then b?* = g. Lemma 2.2 is

proved. |

Let d = p*m, where p and m are coprime. An element of U is a d-th power if
and only if it is a p*-th power.

From Lemmas 2.1 and 2.2 it follows that an arbitrary element from the coset
g Upk 41 I8 a pF-th power.
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COROLLARY 2.1: An arbitrary element from Upyy = g"’k (g”kUpk_,,l) is a
product of two p*-th powers.

LEMMA 2.3: A system of simple roots A is a union of subsets

A=A U Ua U -Uas

where each Aj, A} corresponds to a connected part of the Dynkin diagram;
ALl = - = || = A1 = --- = |AL] = 70, 70 £ |Agqa| < 29 + 2; for any

a € A;, f€A;, where i # j, the a + 3 is not a root; for any o € Al, § € A;,
where i # j, the o + 3 is not a root.

Proof: If n < 2rg+ 2 then ¢ = 0 and Agy1 = A. Suppose, therefore, that
n > 2rp+ 3. Let £ = A, the Dynkin diagram is:

where natural numbers represent simple roots. We have n = (ro + 1)(¢+ 1) + 7,
0<r<roqg21
Let

A ={1,2,...,10}, Ao={ro+2,...,2rp+1},...,

Ag={{g—=Dro+q,....,qro+q—1}, Agp1={g(ro+1)+1,...,n},
[Ag+1|=ro+1+7<2ro+1; A} ={2,...,70+1},

Ay={ro+3,...,2r0+2},..., A ={(g—Dro+qg+1,...,q(ro +1)}.

If ¥ is a root system of one of the types B,,, C,, D, then we add the n-th
root to the subset Ag1, thus possibly increasing its size to 2rg + 2. Lemma, 2.3
is proved. 1

Recall, that for an arbitrary r > 1 there exists a number N = N(r) such that if
% is a reduced irreducible root system of rank < r, F is a field, and G = G(%, F),
then either G* = (1) or G = {g¢--- g% |g: € G}.

LEMMA 2.4: Let t = N(2ro +2) + N(ro). An arbitrary element from U can be
represented as g% - - - g¢u, where u € Us.

Proof: Let G; be the subgroup generated by root subgroups Xi., a € A;,
1<i<qg+1andlet G; be the subgroup generated by root subgroups Xy,
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a € A;-, 1 < j < g¢. Then any two elements from distinct subgroups G;, G;

U
73

(resp. G
We have U C Gy - Gg41G) - - G;Uz. An arbitrary element from G; can be
represented as a product of N{(2rg + 2) d-th powers of elements of G;. Hence,

G’) commute.

an arbitrary element from G ---Gg41 also can be represented as a product of
N(2ro + 2) d-th powers. Similarly, an arbitrary element from G'---G} is a
product of N(rg) d-th powers. This finishes the proof of the lemma. |

LEMMA 2.5: An arbitrary element from U, k > 2, can be represented as
g¢---gSu, where g; € G, 1 <i < 2t, u € Ugyy.

Proof: Let uy € Ux. By Lemma 2.1 we have uy = [ug—1, g]-uk+1, where ug_; €
Uk-1, Uk+1 € Up41-

Furthemore, Lemma 2.4 implies that g = g'us, where ¢’ is a product of t d-th
powers of elements of G, u; € Uy. Now,

ug = [uk—l,g/-u2]uk+1 = [uk—-17u2][uk—-1,gl][[uk—lv.‘]l],uz]uk+l-

The element [ug_1, ¢'] is a product of 2¢ d-th powers. The elements [[ux_1, g'], u2]
and [Uk_l,ll.g] lie in Uk+1.
Hence,

e = ([te-1, u2]{uk-1, ¢ [wi-1,u2] ") - ([ur—1, v2)[[Uk—1, g+], Uo)ti+1)
= glli T glzit'u"
where u = [ug—1, u2){[uk-1, ¢'], u2)ukt+1 € Uk41. Lemma 2.5 is proved. |

From Lemmas 2.4 and 2.5 and the Corollary of Lemma 2.2 it follows that an
arbitrary element from U is a product of Ny = t + 2t(p* — 1) + 2 d-th powers of
elements of G.

Now let us consider elements wq (k) = To(k)T_o(—k71)zo(k) and hq(k) =
wa(k)wa(l) Y, a €L, 0£ ke F.

The subgroup H is generated by elements h,(k), « € A, 0 # k € F. Following
the notation of Lemma 2.3, let H(A;) and H(A’) denote the subgroups generated
by elements hq(k), @ € A; and by he(k), o € A’ respectively. We have

H=H(Ay) - H(Agu)H(AY) ---H(A)) < Gl---GqHG’l---G;.

Hence, an arbitrary element from H can be represented as a product of Ny =
N(2ro + 2) + N(ro) d-th powers.
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Let N be the subgroup of G generated by all elements w, (k),a € Z,0# k € F.
Let W be the Weyl group of ¥, that is the group generated by reflections wg,
a € . It is known (see [9]) that H is a normal subgroup of N and there is an
isomorphism ¢: W —— N/H such that @(wy) = Hw, (k) for any a.

CASE A: Let ¥ = A,. Then W is isomorphic to the symmetric group S, =
(12)Any1. Thus, W = ws, Wy, where Wy 2 A, 4.

Let Ng be the subgroup of N generated by all cosets lying in ¢(W,). Clearly,
N = ws, (1) Nop. The element ws, (1) lies in the subgroup of G generated by X5,
1<i<rg.

Hence, ws, (1) is a product of N(rp) d-th powers. An arbitrary element of Np
is a product of N4 d-th powers modulo H. Finally, an arbitrary element from N
is a product of N(ro) + N4 + NH d-th powers.

Casg B: If £ = B,, then the Dynkin diagram is:

b1 62 O3 On—1 b,
and the Weyl group is isomorphic to S, « Z¥. An element a = (a1,...,a,) €

Z3 can be represented as a commutator (g,b), g € S,, b € Z%, if and only if
ay+ -+ a, = 0. Hence, W = ws, Wo(w1 Wy, 23 )ws,, Wy = A(n). Each of the
elements ws, (1), ws, (1) is a product of N(rg) d-th powers. As above we conclude
that an arbitrary element from N is a product of N(ro) + Na+2(N(ro) + Na) +
N(ro) + Ng =4N(rg) + 3N4 + Ny d-th powers.

CASE C: This case is similar to the case B.

Casg D: If ¥ = D, then the Weyl group is W = §,, « Z7(0), where Z3(0) =
{(a1,...,an) € Z¥ay + -+ + a, = 0}. Hence, W = ws, Wy(ws, Wo, Z7(0)). An
arbitrary element from N is a product of 3(N(rg) + N4) + Ny d-th powers.
Now we can finish the proof of the Theorem for Chevalley groups. Let B = UH
be the Borel subgroup of G. From the Bruhat decomposition it follows that an
arbitrary element of G is a product of 2(Ny + Ny) + 4N{(r¢) +3N4 + Ny d-th

powers.

Remark: 1If G is a Chevalley group over an infinite field F, then every element
of G is a product of a bounded number of d-th powers, as it follows from the
proofs of the above results.
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3. Twisted groups

Since we are interested only in groups of sufficiently big rank we will consider
only groups of type 2%, where £ = A, or £ = D,,. Such a group is the subgroup
of the Chevalley group G(Z, F) which is fixed by a certain automorphism o of
order 2 (see [9]).

For any root subgroup X,, @ € ¥ we have 6(X,) = X (), where p is the auto-
morphism of ¥ induced by the symmetry of the Dynkin diagram. The subgroups
U, H, N, B are fixed by ¢ and G(zE,F) = By;Ny;Bys, By = Hy,U,. That’s why
we’ll apply the same scheme as before.

CaSE 2D,: Consider the lattice @, Zw; C R™. Then

Y= {tw; tw;,1 <i#j<n},

A={6=w ~wyly=ws—ws...,0n_1 =Wn_1 —Wn,0p =Wn_1 +wa}

The symmetry p is induced by the linear mapping w; —» w; for 1 <i<n -1,
Wy, — —wn. For a p-orbit a of T let X, = X, if a = {a}, a € TN Zw:)
and A, = {2,0(%4), 7o € Xo} if a = {a, p(a)}, @ = tw; £ w,. Since p permutes
positive roots it makes sense to speak about the set of positive orbits £*/p. Since
ht(a) = ht{p(cx)) for any & € Tt it makes sense to speak about the height of an
orbit a € &t /p.

The subgroup U,, is generated by all z,’s, where u € ¥ /p, ht(a) > i. Then
Uy =U,3 > Uy 2 > -+ is a central p-series. Let ¢’ = x5, (1) ---25,_,(1).

LEMMA 3.1: For any m > 1 we have [Uy m/Us m+1,9'] = Usm41/Uo,m+2-

Proof: Let a be a p-orbit of £+ of height m + 1. If a € .77, Zw;, then the
assertion follows from Lemma 2.1.

For a = {w; +wy,wi —wn}, ht(a) = n—i=m+1, we have X, = [A4, 75,(1)] =
[X, '] mod U, 2, where b = {wiy1 + wp,wis1 — w,}. Lemma 3.1 is proved.

In view of Lemma 2.2 an arbitrary element from U, ,x4; is a product of two
d-th powers.

For every subset A;, A’ of Lemma 2.3 we have p(Ai) = As, p(A)) = Al
and A/p =AU - UAUQg+1/p)UATU - --U A We can assume that the
number 7o is big enough so that for any field F the groups G(*D,,, F) and
G(%A,,, F) do not satisfy the law z¢ = 1. The number N(k), k > rp, can also be
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adjusted to make sure that an arbitrary element from G(2Dg, F) or G(2A, F) is
a product of N(k) d-th powers. Repeating the arguments from Lemmas 2.4, 2.5,
we get that an arbitrary element from U, is a product of Ny , = t+2t(p* —1)+2
d-th powers, where t = N(2r¢ + 2) + N(rq).

Again repeating the arguments from the second section we conclude that H, C
Gy Ggq1GY - --G; and, thus, an arbitrary element from H, is a product of
Ny, =t d-th powers.

The group W, = N,/ H, is isomorphic to the Weyl group of type B,_1, that
is W, = S(n—1) o« Z3~'. As in the second section, it implies that an arbitrary
element from N, is a product of 4N(rg) + 3N4 + ¢ d-th powers. From Bruhat
decomposition G = G(®D,,, F) = B,N,B, it follows that an arbitrary element
of G is a product of 2(Ny,s +t) + (4N(ro) + 3N4 + t) d-th powers.

CASE 2A,: Consider the lattice @7 Zw; C R*. Then

Z={wi~wj,1_<_i7éjﬁn+1},

A={51 =w1—w2,62=w2—w3,...,6n=wn—-wn_,,l,}.

The symmetry p is induced by the linear mapping w; — —wp42-; for1 <i <n+1.
Let 7(i) =n+2—1i.
Let k = %(ro + 1) if rp is odd and k = —21-7"0 + 1 if 7y is even. In both cases
2k > rg+1 and 4k < 2rg + 4.
Let n+1=2k(g+ 1) +r, r < 2k. Consider the sets

Sy ={1,2,...,k,7(1),...,7(k)},
Sy={k+1,...,2k,7(k+1),...,7(2k)},
v Sy={lg-Dk+1, ..., gk, 7((g-Dk+1),...,7(gk)},
Sg+1={i,gk <i<n+2-qk}.

It is easy to see that {1,2,...,n + 1} is the disjoint union of Si,...,Sq41;
|S;| = 2k for 1 <4 < ¢ and |Sg41| = 2k +r < 4k. For

S,' = {il,...,ik,T(il),...,T(ik)}

consider also the subset S} = {i; +1,...,4 + 1,7(i1 + 1),...,7(ix + 1)}. Then
|S{| = 2k and S} S} =0 for i # j.
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Let G, (resp. G;) be the subgroup of G(A,, F') generated by root subgroups
Xu;—w; Where i,5 € S (resp. Sj). Each subgroup Gi, G| is o-invariant. Let G,
(resp. G} ,) be the subgroups of o-fixed elements. We have

HU g Gla o 'GQ+1,0G/10 o 'Ggo'

Hence an arbitrary element from H is a product of ¢t = N(2rg 4 4) + N(ro)

d-th powers.
Furthemore,
Uy, CGio - Gai1,0Glp - GooUs 2-
Let &;,,...,6;, be all simple roots lying in & €S Zw,. Since S; is symmetric

we can put them in such an order that the element g; = x5, (1)--- s, (1) lies
in G;,. And similarly we get elements g; € G}. Let g = g1 “Gq+191 "9y The
element ¢ is a product of ¢ d-th powers of elements of G,.

One-element orbits of p in T look like {w; — w,(;)}. Let C be the subgroup
generated by all root subgroups X, —w,;,,» where ¢ < 7().

LEMMA 3.2: An arbitrary element x from U, 2 can be represented as x = c[u, g],
wherece C, u € U,.

Proof: Let a = {a,p(a)} be a two-element orbit from L*/p of height m. Then
Xy = {2a0(Ta), Ta € Xo}. By Lemma 2.1, for an arbitrary element z,, € X, we
have To = [Ta, ' Ta,, g) M0d Ung1, where 74, € X, ht(a;) = m — 1. Then,

o0 (To) = [£0,0(Tay) T, 0(Za, ), 9] mOdUs m1.

Suppose that we have found elements ¢, € C, um, € U, such that x = cm{um, ¢]
mod Ug .

For a two-element orbit a € £+ /p of height m, and for an arbitrary element
£, € X,, we have £, = [y, g mod Uy m41, where y € Uy . Hence, ¢ [tim, glr, =
Cm[tmy, g] mod Us m41.

If a is a one-element orbit of height m, then X, C C and  c¢p[um,glTa =
(cm®a)[tm, 9] mod Uy mo1. This proves Lemma 3.2. ]

The set {1,2,...,n + 1} can be divided into a disjoint union of 7-symmetric
subsets Ti,To,... each of size k, ro < k < 2rg. Let G(Ty) be the subgroup

generated by all root subgroups X, —v;; 4,J € Tx and let G (T%)s be the subgroup
of o-fixed elements of G(T%). Flements from distinct subgroups G(T;), G(Tj)
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commute, and C C [], G(Tk)o. Hence, an arbitrary element from C is a product
of N(2rp) d-th powers.

Now it follows that an arbitrary element from U, is a product of N(2rg) + 3t
d-th powers.

The quotient group N, /H, is isomorphic to the Weyl group of type B,,. Thus,
like in the second section, we conclude that an arbitrary element of G(2A,, F) is
a product of 2(N(2rq) + 4t) + (4N(ro) + 3N4 +t) d-th powers. The Theorem is
proved. -

The authors are grateful to A. Mann and the referee for helpful remarks.

Remark: After this work was finished the first author learned from J. S. Wilson
that I. Sax]l and J. S. Wilson have independently proved the Theorem.
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