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ABSTRACT 

Let G be a group.  For a na tu ra l  n u m b e r  d _~ 1 let G d denote  the  subgroup  

of G genera ted  by all powers a d, a E G. 

A. Shalev raised the  quest ion if there  exists  a funct ion N --- N(m,d )  

such  t ha t  for an  m-gene ra t ed  finite group G an  arb i t ra ry  e lement  f rom 
d d G d can  be  represented  as a 1 . . . a N ,  ai E G. The  positive answer  to this  

ques t ion  would imply t ha t  in a finitely genera ted  profinite group G all 

power subgroups  G d are closed and  t ha t  an  arb i t rary  subgroup  of finite 

index in G is closed. In [5,6] the  first au tho r  proved the  exis tence of such  

a func t ion  for n i lpotent  groups and  for finite solvable groups of bounded  

F i t t ing  height .  

Ano the r  in te rpre ta t ion  of the  exis tence of N(m,d)  is definabili ty of  

power subgroups  G d (see [10]). 

In this  paper  we address  the  ques t ion  for finite s imple groups.  All finite 

s imple  groups  are known to be  2-generated.  Thus ,  we prove the  following: 

THEOREM: There  exists.a function N = N(d) such that for an arbitrary 

finite simple group G either G d -: 1 or G = {a d . . .  adN[ai E G}. 

T h e  proof  is based on the  Classification of finite s imple groups and  

some t imes  resor ts  to a case-by-case analysis.  

* P a r t i a l l y  s u p p o r t e d  by  D G I C Y T .  

** P a r t i a l l y  s u p p o r t e d  by  t h e  N S F  G r a n t  D M S - 9 4 0 0 4 6 6 .  

R e c e i v e d  J u n e  15, 1995 a n d  in  r e v i s e d  f o r m  N o v e m b e r  1, 1995 
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1. A l t e r n a t i n g  g r o u p s  

E. Ber t ram [1] proved that  for any numbers n,l such that  n > 5, [3n/4] _< l ~ n, 

an arbi trary even permutat ion on n symbols can be expressed as a product of 

two cycles each of length I. 

Without  loss of generality we will assume that  the number d is even. If n > 4d, 

then there exists an odd number I such that  [3n/4] < l < n and l is relatively 

prime with d. 

Since an element of order l, (/, d) = 1, is a d-th power, it follows from the result 

of Ber t ram that  every even permutat ion on n symbols (n _> 4d) is a product of 

two d-th powers. 

There exists a number M(d) such that  for any n < 4d an arbitrary element 

from A(n) is a product of M(d) d-th powers or A(n) d = (1). Now it remains to 

let g(d) = max(M(d) ,  2). 

This proves the theorem for alternating groups. 

2. C h e v a l l e y  g r o u p s  

Let E be a reduced irreducible root system, F a field, and let G = G(E, F)  be 

the universal Chevalley group, that  corresponds to E and F (for definitions and 

notation see [9]). If  we want to consider untwisted and twisted Chevalley groups 

simultaneously we will use the notation G(~E, F). 

Let Z be the center of the group G(~E,F) .  It  is known that  G(~E,F)  is a 

perfect group and the quotient group G(~E, F)/Z is simple unless both  the field F 

and the rank of Z are very small. This implies that  an arbitrary normal subgroup 

of G(~E, F)  is either the whole group or is contained in Z. If G(~E, F)  d C_ Z then 

the simple group G(~E, F)/Z has exponent dividing d. There are finitely many  

finite simple groups of a given exponent (see [2]). Hence there exists r0 _> 1 such 

that  if the rank of E is greater than or equal to r0, then for any field F we have 

G(~E, F) = a(~z, F) d. 
Let E be a root system of rank greater than or equal to r0. Just as it was 

shown in [10] for products of commutators,  we will show that  there exists a 

number M = M(E)  such that  for an arbitrary field F we have 

C(~E,F) = {a a...aaMlai e C(~Z,F)}. 

Otherwise, for an arbitrary n >_ 1 there exists a field F,~ and an element x ,  e 

G( 'E ,  F, 0 which is not a product of less than n d-th powers of elements of 
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G(~E, Fn). Let /4 be an ultrafilter in the set of natural numbers and let F 

be the ultraproduct F = 1-IneN Fn/U of fields Fn. M. Point [7] proved that  

G(~E, F)  = I-IneN G( ~E, Fn)/lg. Then the element x = (xl, x2 , . . . ) /L /does  not 

lie in G(~E, F) d, which contradicts our earlier assertion�9 

Since there are finitely many root systems of given rank and in view of the 

remark above, we will always assume that E is one of the root systems An, Bn, 

Cn, Dn, n >_ r0. Let F be a finite field of characteristic p > 0. 

Let A = {51, . . . ,  5n} be a system of simple roots of E and let E + be the set 

of all positive roots with respect to A. The subgroup U generated by all root 

subgroups X~ = {x~(k), k E F},  where (~ E E +, is a Sylow p-subgroup of G. Let 

Ui be the subgroup of G generated by all root subgroups X~ where ht(c~) _> i. 

The series U = U1 > U2 > ".. is a central p-series of U, that is, [Ui, Uj] C__ Ui+j 
and U~ C_ Uip. 

Let g = x~ ( 1 ) . . . x ~  (1) E U\U2. Each factor Ui/Ui+l is an elementary abelian 

p-group. The commutation with the element g induces the linear mapping 

Vi/Vi+l , Ui+I/Ui+2, where aUi+l , [a,g]Ui+2, a C Ui. 

LEMMA 2 .1 :  [Um/Um+l,g] = Um+l/Um+2, m >_ 1. 

Proof'. The Dynkin diagram of E is one of the following diagrams: 

An : 5i 52 53 5n-i 5n 

B n  : 51 52 53 5n-1 5n 

Cn : 51 52 53 5n--1 5n 

51 52 

. . .  ~ 5 n - - i  

5n--2""* 5,~ 

n 
If a = ~-~/--1 kihl is a positive root, ki >_ 0, then kl is equal either to 0 or to 1. 

If kl -- 1, then there is at most one simple root 5 such that  c~ + 5 E E. 

We will prove the lemma by induction on n. For n = 1 the assertion is trivial. 

Let a be a root of height m + 1. There exists a simple root 5k such that  ~ - 5k is 

a root of height m (see [3] or [4]). If the only simple root 5 such that  (~ - 5 E E 

is 5k, then [X~_~k,g ] = [X~_~, x~(1)] = X~ mod Urn+2�9 
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That ' s  why we will suppose that  at least two differences of a with simple roots 

lie in Z. 

Let us consider the case when the decomposition of a as a linear combination 

of simple roots nontrivially involves 51. Then there exists a root 5k, k _> 2, 

such that  a - 5k E E. The decomposition of a - 6k still involves 51. Hence, 

[X~_,~, 9] = [X~_,~, x6 k (1)] = X~ rood U,~+2. 

Now suppose that  the decomposition of a does not involve 61. Let E'  be the 

(root) subsystem of E generated by 4-62, . . . ,  4-6n. Let a l , . . . ,  at be all positive 

roots of E'  of height m (with respect to 62 , . . . ,  6n). Let g' = x*2 ( 1 ) . . . x , .  (1). 

' U  By the induction assumption the root subgroup X~ lies in [Xo 1 . . .  X~,, g ] m+2. 

Hence X,~ C_ [X,~I.. .X,~,,g][X,~ .. "X,~,,x~,(-1)]Um+2. 

But [X~  . . . X ~ , x ~ l ( - 1 ) ]  C_ X~I+6 ~ ""X~+6~Um+2 C_ [Urn,glUm+2 by what  

we proved above. Lemma 2.1 is proved. | 

LEMMA 2.2: Let P be a tinite p-group with a central p-series P = P1 > P2 > 

�9 ... Suppose that there exists an element g C P\P2 such that [Pm/Pm+l, 9] = 

Pm+l/Pm+2 for any m >_ 1. Then for any k _> 1 an arbi t rary  element from 

9Pk Pp~+l is a pk-th power. 

k 
Proof'. Let a be an element from g. Pp~+l. Suppose that  we have found an 

element b~ -- 9c, c E P2, such that  ~k = a m o d  P~, s _ > p k + l .  To s tar t  the 

process we let bp~+l = g. Let ~ = a.d, d E P~. 

There exists an element u E P~_pk+l such that  

Then 

[ ' ' ' [ l t ,  g],g], ' ' ' ,g!~--- d - l  m o d  r s + l  , 

pk-1 

(gc~) pk = (gc) p k [ ' ' ' [ u , g ] , g ] , ' ' ' , g ! ~ -  add -1  ~-- a m o d  Ps+l .  

pk--1 

Now it remains to let bs+l = gcu. I f P s  -- (1) t h e n ~  = a. L e m m a 2 . 2  is 

proved. | 

Let d = pkm, where p and m are coprime. An element of U is a d-th power if 

and only if it is a pk-th power. 

From Lemmas 2.1 and 2.2 it follows that  an arbi trary element from the coset 

gP~Up~+l is a pk-th power. 
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---- p k  COROLLARY 2.1: An arbitrary element from Upk+l  g_pk(g Upk+l) is a 

product of two pk-th powers. 

LEMMA 2.3: A system of simple roots A is a union of subsets 

i =,~lU'o'U,~q+lU/~IU'"UAq, 

where each A~, A~ corresponds to a connected part  of the Dynkin diagram; 

[AI[ . . . . .  IAq[ = [ il . . . . .  I 'ql = ro _< I q+ll -< 2ro + 2; for any 

E Ai, /3 E Aj, where i r j ,  the a +/3 is not a root; for any a E A~, j3 E A~, 

where i ~ j ,  the a q- ~ is not a root. 

Proof" If n _< 2ro q- 2 then q = 0 and Aq+l = A. Suppose, therefore, that  

n >_ 2ro + 3. Let E = An, the Dynkin diagram is: 

�9 * .  ~ 

1 2 3 n - 1  n 

where natural numbers represent simple roots. We have n = (to + 1)(q + 1) + r, 

0 < r < r0, q _> 1. 

Let 

A l = { 1 , 2 , . . . , r 0 } ,  A s = { r o + 2 , . . . , 2 r 0 + l } , . . . ,  

A q = { ( q - - 1 ) r o + q , . . . , q r o + q - - 1 } ,  A q + l = { q ( r o + l ) + l , . . . , n } ,  

[ A q + l [ = r o + l + r < _ 2 r o + l ;  A ~ l = { 2 , . . . , r o + l } ,  

A S - - { r o q - 3 , . . . , 2 r o + 2 } , . . . ,  A t q = ( ( q - - 1 ) r o q - q q - 1 , . . . , q ( r o q - 1 ) } .  

If ~ is a root system of one of the types Bn, Cn, D~ then we add the n-th 

root to the subset Aq+l, thus possibly increasing its size to 2ro q- 2. Lemma 2.3 

is proved. I 

Recall, that  for an arbitrary r > 1 there exists a number N -- N(r)  such that  if 

E is a reduced irreducible root system of rank _< r, F is a field, and G = G(E, F) ,  

then either G d = (1) or G = {gd . . .gd ig  i E G}. 

LEMMA 2.4: Let t = N(2ro + 2) + N(ro). An arbitrary element from U can be 

represented as gdl . . .  gdu, where u E U2. 

Proof" Let Gi be the subgroup generated by root subgroups X+~, a E Ai, 

1 < i < q + 1 and let G~ be the subgroup generated by root subgroups X+~, 
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a E A}, 1 _< j _< q. Then any two elements from distinct subgroups Gi, Gj 

(resp. G~, G}) commute. 

We have U C_ G1. . .  Gq+IG~...G~U2. An arbitrary element from Gi can be 

represented as a product of N(2r0 + 2) d-th powers of elements of Gi. Hence, 

an arbitrary element from G1. . .  Gq+l also can be represented as a product of 

N(2r0 + 2) d-th powers. Similarly, an arbitrary element from G~. . .G~ is a 

product of N(ro) d-th powers. This finishes the proof of the lemma. | 

LEMMA 2.5: An arbitrary element from Uk, k >_ 2, can be represented as 

gd. . .gdtu ' where gi E G, 1 < i < 2t, u E Uk+l. 

Proof: Let uk E Uk. By Lemma 2.1 we have uk = [Uk-l,g].uk+l, where uk-1 E 

Uk-1, uk+l ~ Uk+l. 

Furthemore, Lemma 2.4 implies that g = g~u2, where g! is a product of t d-th 

powers of elements of G, u2 E U2. Now, 

U k  = [ I rk - l ,  g ' . ' t t2]ltk+l ----- [ U k - 1 ,  l t2][l tk-1,  g ' ] [ [ t tk-1,  g'] ,  I t2]l tk+l.  

The element [uk-1, g'] is a product of 2t d-th powers. The elements [[Uk_l,  g'], u2] 

and [uk-1, u2] lie in Uk+l. 

Hence, 

Uk = ([Uk--1, "tt2][?-tk-1, gt][Uk-1, U2]-l) �9 ([~tk-1, It2][[ltk--1, g"~], lt2]Uk+l) 

yd. d U 
= " " g 2 t  , 

where u = [uk-1, u2][[uk-,, g'], u2]uk+l E Uk+l. Lemma 2.5 is proved. | 

From Lemmas 2.4 and 2.5 and the Corollary of Lemma 2.2 it follows that  an 

arbitrary element from U is a product of Nv = t + 2t(p k - 1) + 2 d-th powers of 

elements of G. 

Now let us consider elements w~(k) = x~(k )x_~( -k -1 )x~(k )  and h~(k) = 

-1, e z ,  0 # k e F. 

The subgroup H is generated by elements h~(k), a E A, 0 r k E F. Following 

the notation of Lemma 2.3, let H(Ai) and H(A~) denote the subgroups generated 

by elements h, (k ) ,  a E A~ and by h~(k), a E A} respectively. We have 

! 
H = H ( A 1 ) . . .  H(Aq+~)H(A~) . . .  H(A'q) <_ G1. . .  Gq+~G~...Gq. 

Hence, an arbitrary element from H can be represented as a product of NH = 

N(2r0 + 2) + N(ro) d-th powers. 
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Let N be the subgroup of G generated by all elements w~(k), ~ C E, 0 ~ k E F. 

Let W be the Weyl group of E, that is the group generated by reflections w~, 

E E. It is known (see [9]) that H is a normal subgroup of N and there is an 

isomorphism ~: W ~ N / H  such that ~(w~) = Hw~(k) for any a. 

CASE A: Let E = An. Then W is isomorphic to the symmetric group Sn+l = 

(12)An+1. Thus, W --- w~ W0, where W0 --- An+l. 

Let No be the subgroup of N generated by all cosets lying in ~(Wo). Clearly, 

N = w~ 1 (1)No. The element w~ (1) lies in the subgroup of G generated by X• 

l < i < r o .  

Hence, w~ (1) is a product of N(ro) d-th powers. An arbitrary element of No 

is a product  of NA d-th powers modulo H. Finally, an arbitrary element from N 

is a product of N(ro) + NA + NH d-th powers. 

CASE B: If E = Bn, then the Dynkin diagram is: 

and the Weyl group is isomorphic to Sn o( Z~. An element a = ( a l , . . . ,  an) E 

Z~ can be represented as a commutator (g, b), g C Sn, b E Z~, if and only if 

el h - " "  q-an = 0. Hence, W = w51Wo(a)lWo, Z~)D25~, W 0 ~ A(n). Each of the 

elements w~ 1 (1), w~ (1) is a product of N(ro) d-th powers. As above we conclude 

that  an arbitrary element from N is a product of N(ro) + NA + 2(N(r0) + NA) + 

N(ro) + NH = 4N(r0) + 3NA + NH d-th powers. 

CASE C: This case is similar to the case B. 

CASE D: If E = Dn, then the Weyl group is W -~ S, cc Z~(0), where Z~(0) = 

{ ( a l , . . . , a n )  e Z~lal + . . .  + a n  = 0}. Hence, W = w~iWo(w~Wo, Z~(O)). An 

arbitrary element from N is a product of 3(N(r0) + NA) + NH d-th powers. 

Now we can finish the proof of the Theorem for Chevalley groups. Let B --- UH 

be the Borel subgroup of G. From the Bruhat decomposition it follows that  an 

arbitrary element of G is a product of 2(NH -~- Nu) + 4N(ro) + 3NA + NH d-th 

powers. 

Remark: If G is a Chevalley group over an infinite field F, then every element 

of G is a product of a bounded number of d-th powers, as it follows from the 

proofs of the above results. 
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3. T w i s t e d  g r o u p s  

Since we are interested only in groups of sufficiently big rank we will consider 

only groups of type 2E, where E = As or E = D, .  Such a group is the subgroup 

of the Chevalley group G(E, F)  which is fixed by a certain automorphism a of 

order 2 (see [9]). 

For any root  subgroup X~, a E E we have a(X~) = Xp(~), where p is the auto- 

morphism of Z induced by the symmetry of the Dynkin diagram. The subgroups 

U, H,  N, B are fixed by a and G(2E, F)  = BoNoBa, B~ = HoUa. That 's  why 

we'll apply the same scheme as before. 

CASE 2Dn: Consider the lattice ~ l  Zw~ _c R ~. Then 

= {+w~ d= wj,1 < i r j <_ n}, 

A = {~l = ~l  - w2,62 = ~2 - wa, . . .  ,6~-1 = ~ , - i  - ~ , , ~ ,  = w , - i  + w,}. 

The symmetry p is induced by the linear mapping wi --~ wi for 1 < i < n - 1, 
n - - 1  

~ --~ -wn.  For a p-orbit a of E let Xa = X~ if a = {a}, a E E ~ ( ~ i =  i Zwi) 

and Xa = {x~a(x~),  x~ E X~} if a = {a, p(a)}, a = • +wn. Since p permutes 

positive roots it makes sense to speak about the set of positive orbits E+/p .  Since 

ht (a)  = ht (p(a))  for any a E ~+ it makes sense to speak about the height of an 

orbit a E E+ / p. 

The subgroup Uo, is generated by all x~'s, where a E E+/p, ht(a) >. i. Then 

Ua = Uo,1 >__ Uo,2 >_ "." is a central p-series. Let g' = x~l (1) - . .x~_2(1  ). 

LEMMA 3.1: For any m > 1 we have [Ua,m/Ua,m+l ,g  t] = U~,m+l/Ua,m+2. 

n - - 1  
Proof: Let a be a p-orbit of ~+ of height m § 1. If a E ~ i = i  Z ~ ,  then the 

assertion follows from Lemma 2.1. 

For a = {wi + ~ , w ~ - w , } ,  ht(a) = n - i  = m + l ,  we have X~ = [Xb, x~,(1)] = 

[Xb, g'] mod Uo.m+2, where b--- {w~+i + cor~,w~+i - w ~ } .  Lemma 3.1 is proved. 

| 

In view of Lemma 2.2 an arbitrary element from U~,p~+l is a product of two 

d-th powers. 

For every subset A~, A~ of Lemma 2.3 we have p(A,) _= Ai, p(A~) _~ /k~ 

and A l p  = A i U ' " - U / k q g ( ~ q + l / p ) U / V l g  . .  " g A q  �9 We can assume that  the 

number ro is big enough so that  for any field F the groups G(2D~o,F) and 

G(2A~o,F) do not satisfy the law x d = 1. The number N(k) ,  k >_ ro, can also be 
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adjusted to make sure that  an arbitrary element from G(2Dk, F)  or G(2Ak, F)  is 

a product of N ( k )  d-th powers. Repeating the arguments from Lemmas 2.4, 2.5, 

we get that  an arbitrary element from Uo is a product of Nu,o = t + 2t(p k - 1) + 2 

d-th powers, where t = N(2r0 + 2) + N(ro).  

Again repeating the arguments from the second section we conclude that  Ha C_ 

G 1 . . . G q + I G ~ . . .  G'q and, thus, an arbitrary element from Ho is a product of 

NH,a = t d-th powers. 

The group W~ = N o / H o  is isomorphic to the Weyl group of type B~-I ,  that  

is Wo ~- S ( n  - 1) o( Z~ -1. As in the second section, it implies that an arbitrary 

element from No is a product of 4N(r0) + 3NA + t d-th powers. From Bruhat 

decomposition G = G(2Dn, F)  = B o N o B ,  it follows that an arbitrary element 

of G is a product of 2(Nu,o + t) + (4N(r0) + 3NA + t) d-th powers. 

,a-~n+l Z R n. CASE 2An: Consider the lattice ~:~i=1 02i C Then 

E =  {wi-wj,1 < i# j  < n +  1}, 

A : { (~1  : 021 - 0 2 2 ,  5 2  : 022 - 0 2 3 ,  �9 � 9  5 n  : 02n  - 0 2 n + 1 ,  }. 

The symmetry p is induced by the linear mapping wi --~ -wn+2-i  for 1 < i < n + l .  

Let T(i) = n + 2 - - i .  

1 1) if is odd a n d k =  � 8 9  if to is even. In both cases Let k = ~(ro + ro 

2k > ro + 1 and 4k < 2ro + 4 .  

Let n + 1 = 2k(q + 1) + r, r < 2k. Consider the sets 

$1 = { 1 , 2 , . . . , k , T ( 1 ) , . . . , T ( k ) } ,  

$2 -- {k + 1 , . . . , 2k ,  T ( k +  1) , . . . ,T(2k)} ,  

. . . .  S q = { ( q - 1 ) k + l ,  . . . ,  qk, T ( ( q - 1 ) k + l ) , . . . , T ( q k ) } ,  

Sq.4-1 = {i, qk < i < n + 2 - qk}. 

It is easy to see that  {1 ,2 , . . . . ,n  + 1} is the disjoint union of S 1 , . . . , S q + I ;  

]S~[ = 2k for 1 < i < q and ]Sq+l[ = 2 k + r  < 4k. For 

Si = { i l , . . . , i k , r ( i l ) , . . . , T ( i k ) }  

consider also the subset S~ = {il -{- 1 , . . .  , i  k + 1, r ( i l  + 1) , . . .  , r ( ik  + 1)}. Then 

IS~I --- 2k and S~ N s~ = 0 for i # j .  
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Let Gl (resp. G't) be the subgroup of G(A~, F) generated by root subgroups 

X~_~j  where i, j �9 St (resp. S[). Each subgroup Gl, G' l is a-invariant. Let Gz,o 

(resp. G~,o) be the subgroups of a-fixed elements. We have 

! 
Ho C_ Glo"" Gq+I,~G~o'"Gqo. 

Hence an arbitrary element from H is a product of t = N(2ro + 4) + N(ro) 

d-th powers. 

Furthemore, 

__ ! " ! U Uo C GI~'"Gq+I,oGlo "'Gqo ~,2. 

Let ~ i l , . . . ,  5~  be all simple roots lying in ( ~ e &  Zw~. Since Si is symmetric 

we can put  them in such an order that the element gi = x~,l (1). .  �9 x~,,~ (1) lies 

' The in Gi,~. And similarly we get elements g~ e G~. Let g = g l " ' "  gq+lg~'"gq. 

element g is a product of t d-th powers of elements of Go. 

One-element orbits of p in E look like {wi - wr(i)}. Let C be the subgroup 

generated by all root subgroups X~_~,(~), where i < ~-(i). 

LEMMA 3.2: An arbitrary element x from Uo,2 can be represented as x = c[u, g], 

where c �9 C, u �9 Uo. 

Proof: Let a = {(~, p(a)} be a two-element orbit from E+/p of height m. Then 

X~ = {x~a(x~), x~ �9 X~}. By Lemma 2.1, for an arbitrary element x~ �9 X~ we 

have x~ = [x~l . . . x ~ ,  g] mod U,~+I, where x~, �9 X~,, ht(c~) = m - 1. Then, 

XOtO'(Xo~ ) : [ X o ~ I O ' ( X t 2 1 ) ' "  "XotrO'(Xo~r),g] m o d U o , m + l .  

Suppose that  we have found elements cm E C, um E U~ such that  x = cm [um, g] 

mod Uo,m. 
For a two-element orbit a E Z+/p of height m, and for an arbitrary element 

xa E Xa, we have x~ -- [y,g] mod Uo,m+l, where y E Uo,,~. Hence, cm[um,g]x~ = 

cm[u,,~y, g] mod Uo,m+l. 

If a is a one-element orbit of height m, then X~ C_ C and Cm[Um,g]x~ = 

(CmXa)[Um,g] mod Uo,,~+I. This proves Lemma 3.2. | 

The set {1, 2 , . . . ,  n + 1} can be divided into a disjoint union of ~--symmetric 

subsets T1,T2, . . .  each of size k, ro _< k <_ 2to. Let G(Tk) be the subgroup 

generated by all root subgroups X~_~j  ; i, j E Tk and let G(Tk)o be the subgroup 

of a-fixed elements of G(Tk). Elements from distinct subgroups G(Ti), G(Tj) 
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commute, and C C_ IIk G(Tk)o. Hence, an arbitrary element from C is a product 

of N(2ro) d-th powers. 

Now it follows that an arbitrary element from Uo is a product of N(2ro) + 3t 

d-th powers. 

The quotient group N,,/Ho is isomorphic to the Weyl group of type Bn. Thus, 

like in the second section, we conclude that an arbitrary element of G(2An, F) is 

a product of 2(N(2ro) + 4t) + (4N(ro) + 3NA + t) d-th powers. The Theorem is 

proved. 

The authors are grateful to A. Mann and the referee for helpful remarks. 

Remark: After this work was finished the first author learned from J. S. Wilson 

that  I. Saxl and J. S. Wilson have independently proved the Theorem. 
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